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EFFECTS OF MECHANICAL PROPERTIES OF MATERIAL
ON CRATERING: A LABORATORY STUDY

by

J. Burlin Johnson! and R. L. Fischer?

SUMMARY

This report describes an investigation of the relationship between crater
dimensions formed in laboratory blasting experiments and the mechanical proper-
ties of the material cratered. Scaled field data have been included when
avallable, The results show that tensile strength and possibly other mechan-
ical properties may be useful in predicting maximum crater dimensions.

INTRODUCTION

The purpose of this Bureau of Mines investigation was to determine to what
extent crater dimensions are influenced by some of the commonly measured mechan-
ical properties of the material cratered and to permit a better comparison
between laboratory-scale craters and large-scale craters in the field. 1In an
earlier report (2)3 it was shown that small-scale cratering in mortar in the
laboratory resembles large-scale cratering in rock. Furthermore, cube root of
charge weight scaling yielded crater dimension curves which were very similar
to those obtained with much larger charges in the field. However, it was not
possible to make a thorough comparison because equipment for measuring physical
properties was not available at the Minneapolis laboratory at that time,
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TESTING METHODS

The methods of measuring and computing the values of the mechanical
properties of the materials cratered are described below. The testing proce~=
dures were somewhat different from those described by Obert, Windes, and
Duvall (4). ‘

Shear Wave Velocity (Vg)

The shear wave velocity was determined by the conventional torsional
resonance technique with the instrument shown in figure 1, The sample was
driven by a phonographic cutting head and audio oscillator, and the resonant
frequency was detected and displayed by a phonographic pickup head, amplifier,
and oscilloscope. A digital frequency meter was used to measure the resonant
frequency to better than 1 percent. This instrument was very convenient to
use in that no pole pieces needed to be cemented on or compensating corrections
made. The instrument was verified by performing tests on duraluminum and steel
bars having known elastic constants. As shown in figure 1, the heads were
oriented to drive and to detect torsional resonance. The shear wave velocity
is then

Vg = 2£,L
where f, is the torsional resonant frequency, and L is the length of the sample.

Bar Velocity (Vg)

The bar velocity was determined with the same resonance instrument by
orienting the heads to drive and to detect longitudinal resonance. Then

VB = 2f1L

where f£; is the longitudinal resonant frequency. One limitation was that the
cutting head used would only respond up to about 14 kilocycles, requiring the
use of a fairly long core when high-velocity material was being tested.,

Longitudinal Velocity (C)

The velocity of longitudinal elastic waves was determined by measuring
the traveltime of an ultrasonic pulse through a specimen. An 800-volt step
pulse having a rise time of approximately 0.2, sec. was used to excite a
piezoelectric source transducer 0.050 inch thick. A similar transducer was
used to detect the pulse. The traveltime was measured in several disks and
cylinders of different lengths of each material, and the velocity was obtained
by least squares from the slope of the time-distance line.*

4Pauline Virciglio, Bureau of Mines mathematician, was responsible for the
statistical and computational work in this report.
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FIGURE 2. - Point Load Tensile Testing Apparatus.

Apparent Porosity (P)

The apparent porosity is defined as the ratio of the volume of open pore
space to total volume of the specimen. A gas pycnometer was used to measure

the open-pore~space volume. Then
vV, -V
- . P =———= x 100
! v
: t
where V. is the total external volume, and Vp is the sample volume measured in

a gas pycnometer.
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FIGURE 3. - Schematic of Point Load Tensile

Testing Apparatus.

Specific Gravity (p)

The specific gravity was
determined by dividing the
weight of the air-dried spec-
imen by the exterior volume
of the specimen.

Static Tensile Strength (T)

Tensile strengths were
obtained by a method developed
by D. R, Reichmuth which con~-
sists of applying a point load
at the surface of a cylindri-
cal specimen perpendicular to
the specimen axis (5). Theory
predicts that tensile stresses
will exist at the axis when a
load is applied in this man-
ner. Reichmuth has shown
experimentally that the ten-
sile strength can be computed
from the relationship

T:0.96F—2
d

where F is the breaking force
applied, and d is the sample
diameter, For diameters of
less than 2 inches, the above
equation is accurate to better
than 10 percent when compared
to data obtained by conven-
tional methods such as axial
tension or line loading of a
cylinder. His method has the
advantages that large numbers
of tests can be performed
rapidly on a limited amount
of core, that flaws and weak-
nesses in the sample have
practically no effect unless
they lie directly between the
applied point loads, and that
surface irregularities due to

A photograph and schematic of the instrument appear
A compressive load was applied perpendicular to the jaws.



Static Compressive Strength

This test was performed in the conventional manner on specimens having a
length to diameter ratio of at least 1.,75. The ends of the cores were lapped
before testing.

Dynamic Young's Modulus (E)

The dynamic Young's modulus was computed, using the measured values of
p, C, and Vg in the expression

MACOED
(&7

where k depends on the units used, and also using the expression

E=k

E = kpVy®

Dynamic Modulus of Rigidity (n)

¢

The dynamic modulus of rigidity was computed from the expression
= 3
W k st

Dynamic Poisson's Ratio (V)

The dynamic Poisson's ratio was obtained graphically from plots of the
following relationships:

V2
&) -
V=v——§'——

R

(

el fa)

Although these are not independent determinations, their agreement does afford
a check on the proper choice of resonant frequencies used to determine Vg and
V.

o fi
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FIGURE 4. - Poisson’s Ratio as a Function of Different Velocity Ratios.
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This method is considerably superior to the commonly used:
2
1. E)
2 Vg
v = v 3
8
(VB>

For a given error in velocity ratio (and y > 0.1), the expressions involv=

v v
ing EE and Eﬁ give a smaller error in VvV than the expression involving_zf.

A

Plots of the three expressions make this readily apparent (fig. 4).

EXPERIMENTAL PROCEDURE

The crater experiments were performed in a manner essentially identical
to those described in an earlier report (2). The materials used were mortar,
plaster of Paris, limestone, granite, basalt, and candle wax.

The physical properties of all but the wax were determined from cores
drilled from blocks of the materials. The mortar and plaster cores were
drilled out of the cratered block and were tested within 48 hours of crater-
ing to minimize any aging effects. The wax properties were determined from
molded cores. A detailed description of the materials is given in table 1.

The explosive used in all tests was one No. 6 electric blasting cap.
The cap was detonated at the bottom of a 5/16~inch shothole stemmed to the top
with water-saturated sand. Crater depth, radius, and volume were measured and
recorded for each test.

The linear dimensions were scaled by dividing by a scale factor defined
as a length in feet numerically equal to the cube root of the charge weight
in pounds. For a No. 6 blasting cap this factor is 1.1 inches. For crater
volume the factor is 20 cc.

The synthetic materials tested were in the form of blocks 2 by 2 by 1
feet, The rock specimens cratered were in blocks of various shapes. Speci=-
mens to be tested were air-dried., Crater volumes were measured after all
loose material had been removed from the craters.

EXPERIMENTAL DATA

The physical properties of the materials cratered are given in table 2.
For plaster of Paris, it was only possible to obtain one usable core for
measuring bar velocity and shear velocity. This same core was used in the
single compressive strength test.

The values of Young's modulus obtained by both methods of computation are
listed in the table. The value used was the average. The listed value of
Poisson's ratio is an average of the two values obtained by using Vg and Vg .

c C



TABLE 1. - Cratering materials

The following blocks were included in the cratering series:

Mortar J.ieeeesssesseess Consisted of a mixture of 2 parts sand, 1 part
. high-early-strength cement, and .50 parts
| water by weight. The measured specific grav-
P ity of the quartz sand was 2.67. When cra-
tered, the block had aged 46 days. All blocks
were water cured for 5 days.

Mortar Il.eceeseceseesss A strong, lightweight-aggregate mixture; it had
an aggregate/high-early-strength cement/Hzo
ratio of 2:1:.53. The lightweight aggregate
had a specific gravity of 2.45. The age of
the block was 63 days.

Mortar IIl..ccceeeseases A weak, lightweight-aggregate mixture; it con-
tained the same aggregate as Mortar II and
consisted of 6 aggregate/high~early-strength
cement/,92 H,0. The age of the block was 21
days.

Plaster of Paris....... Block contained 2 quartz sand/l plaster/.50
water by weight. The aging time was 61 days.

Bedford limestone...... Rounded,cryptocrystalline,carbonate detritus and
(Bedford, Ind.) some crystalline-vein carbonate and numerous,
disseminated cavities.

Charcoal granite....... Dark, fine-grained granite having the following
L (St. Cloud, Minn.) composition: 66 percent feldspar, 16 percent
A quartz, 13 percent amphibole, 3 percent bio-
tite, 2 percent miscellaneous.

Rockville granite...... QCoarse-grained,granite porphyry having the fol-
(St. Cloud, Minn.) lowing composition: 65 percent feldspar, 24

" percent quartz, 10 percent biotite, 1.0 percent
miscellaneous.

Basalteeeessseesseessss Diabasic texture., Composition: 50 percent
(St. Croix Falls, Wis.) feldspar, 40 percent augite, 8 percent magnet-
ite, 2 percent miscellaneous.

Candle WaXe.eseeosseesss Block consisted of 165 pounds of candle wax,
which was melted and poured into a prepared
mold. The resulting block was cratered 14
days later,



10

I 8z" ze A% Lz 0T’

6.0°0 €9°¢ <0° Y 19°€ LA 8L°0

12°0 85" H1 18°6 £€8°L 11°% 68°1

z2°0 16° %1 98°01 96°6 8c Y 08°1

L00°0 €10°0 $00°0 $00°0 220°0 %0°0

9 €1 4 L L1 vl

68°0 96°2 L9z rAANA 0£°e 08°1

61°0 £90°0 - %00 08°0 9z

' L 4 £ 11 €

L1°1 02°0 €L°0 LL°o °61 L°82

¥ 1y c29¢Y ov0°e oLzl gzl -

L 41 L g €1 T

c9¢ 00L°SE 00%°61 00%°82 089°L 0%e‘T

S 11 we z02 z61 6% 74

4! 44 82 001 €€ 4

L*18 062°2 ove‘l 008°1 01¢ 181

4} 81 o1 (114 V4 '

0y9°¢9 00L°1Z 00902 008°81 001¢ €1 006°8

97 X 152 L12 €19 -

S 9 S L c 1

0ZZ‘Yy 00T1°61 00591 009°¢ %1 00S°11 0z8°8

€€ 9€ £9Z 08 z02 - -

S 9 6 L 9 T

095‘2 006°11 00901 000°0T 08y L 089°s
XBM 3ITeseq JITUBIZ | SJTUBIZ | 9UORSSWI] sT1aed

|aTpued STTTANO0Y TRODIBYD pao3zpeyg Jo Iaiseld

oe*

99°0

LTAE

L 1

6%¢

11
00€°01

z
068°8

/AN
€

TII 123I0R

08%‘s

e
18°0

[{ANA

€€° ¢

09L°6

901
S
0019

II Ie3a0H

11

91
16°€

c6°¢

it
6
0L1°L

ssteecaccaraticcceigrIRI S, UOSSTOL

srescereseseoceree 0T X €eqeged
‘£31p1812 JO SNINPOR

sessecscsersesees 0T X Ceyesed
.Am>vh ‘sninpow s, 8unox

IR NN R NN NN W] U WIOH b4 no.ﬂnw-&

ammwm ‘sninpowm s, Sunox

seccscsccece s uOTIETARD PABPURIS
cenw *po3s9] soldums °oN
sess L1728 273 To0ds

...l...i.l....ﬂOﬂumﬂsv v“mvﬂm“m
sesscscsspyIgo] ww._o.&EMm. *oN
**juediad ‘(3uwaedde) L3ysoxog

cessesscsestt UOTIBTASD PIEPUEIS
oooc;o.ou-ﬁ@““@“ WUHﬁsﬁ *oN
eeeyeg*d ‘yir8uaxis sAlsseidmoy

......l."....gOHumﬂgv vkgaum
sevresceceepaygo] goTdmes *ON
ssseessccoyeged fy73URIYS OTTSUSL

oo.ooo.-oocooovﬂuwmu QUH&NW *ON
ooonDOﬂ\.UN nhUHUOHU> Hﬁﬂﬁﬁﬁ“ﬂ&ﬂOﬂ

ceecvcsecrece s UOTIETASD PIRPURIS
sesecccccssceopaysay wUH&E.ww *ON
sececececcerenag /ey ‘£3T00T3A IBY

sevesccsccrc e yOTIRTASP PIEPURIS
-o-oooo-o...o.vaﬁUu— m@ng *ON
-.-.--....D@M\-UM nhUHUOHN> Ieays

I IB3I0K

palsa] sTETIajem JO §3T312doad TeOTSAUd - *7 FTTIGVL




Included on some of the graphs are data obtained from publications by Duvall

and Atchison (1) and Nichols, Hooker, and Duvall (3).

Cratering. from which this

data was gained was done in the field with charges ranging from 0.4 to 32 pounds,
The physical property data for these field tests were obtained by using the stand-

ardized tests (4) on cores in the laboratory.

The values of compressive strength

pertaining to the field data were obtained from cores having a length to diameter
Crater test data for laboratory cores

ratio of 1.0, rather than greater than 1.75.

are presented in table 3.

TABLE 3. - Crater test data

Lo Charge Crater Crater Crater Charge Crater Crater Crater
| depth, radius, depth, volume, depth, radius, depth, volume,
f in in in cc in in in cc
‘ Mortar I Bedford Limestone (Con.)
? 0.4 1.2 0.6 15 0.6 1.2 0.5 15
! .6 1.2 <5 2] 1.1 1.5 .6 18
' .9 1.3 .6 23 1.4 1.9 .6 70
1.1 1.9 .6 68 1.5 2.3 .6 44
1.4 2.0 .6 45 1.7 1.8 .6 50
1.6 2.4 .5 73 1.8 e) ) Aé)
1.9 3.7 .6 206 1.9 2.9 .6 111
2.3 a) ¢) &) 1.9 1.0 .6 9
Mortar II 1.9 1.7 4 18
0.4 1.2 0.4 11 2,1 0.9 3 4
.9 1.6 .8 35 2.2 1.0 ) 7
9 1.8 .6 31 2.4 0.6 .2 1
1.4 2.3 .8 77 2.8 &) &) &)
1.9 3.1 .6 87 Rockville .Granite
2,1 3.6 .6 177 0.3 1.3 0.3 11
2.4 ) &) &) .6 1.7 A 21
. 2.8 &) ¢) *) .9 2.6 A 50
Mortar III 1.2 1.9 A 35
i 0.1 1.3 0.6 19 1.6 1.4 N 16
; A 1.6 9 42 1.6 2.6 .6 61
_: .9 1.9 1.4 86 2.3 1.9 .5 28
i 1.3 2,0 1.1 112 2.3 1.9 5 27
‘ 1.7 2,5 1.0 130 2.8 0.7 .3 2
2.1 3.0 1.5 267 3.1 .8 .3 2
2.6 4.6 1.9 @) 3.4 .6 .3 2
2.8 ) ¢) ) 3.9 @] @) (@)
Plaster of Paris Basalt .
-0.1 0.5 0.3 0.5 0.1 1.0 0.3 4
0.5 1.2 oA 14 o7 1.4 3 17
.9 1.5 .8 43 1.1 1.4 N 17
i 1.5 2,0 1.0 102 1.9 1.0 3 10
; 1.9 2.8 1.3 227 2.6 1.0 3 6
! 2.1 3.5 1.1 286 2,9 1.0 53 8
2.5 &) &) &) 3.1 é) (@) )
Charcoal Granite Candle Wax
0.4 1.9 0.4 25 -0.1 0.4 0.4 1
9 1.6 A 16 0.1 9 .8 9
1.4 2.4 A 68 4 1.6 9 43
1.9 1.1 .3 8 .8 1.7 1.2 56
3.1 5 .1 1 1.9 2,7 0.8 176
Bedford Limestone 2,4 4.4 1.4 715
0.1 0.8 0.2 3 2.9 &) ) &)
.3 1.1 .3 7
1No crater. “Not measured. “Broken block.
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ANALYSIS OF DATA

Crater Depth

Scaled crater depth as a function of scaled charge depth is shown in
figure 5, It is interesting that scaled crater depth remains relatively con-
stant for most materials in the scaled charge depth range of about 0.5 to 2.0.
For all materials there are cases where the scaled charge depth is greater
than the scaled crater depth. When the crushed zone around the charge is all
beneath the bottom of the crater, it is clear evidence that the reflected
strain pulse is responsible for the crater formation, Where the crushed zone
around the charge is large and reaches the bottom of the crater, the mechanism
is less clear, This latter condition occurred in the mortar III and plaster
of Paris blocks.

The marked effect of strain pulse attenuation is also apparent from
inspection of the graphs. Cratering occurs at scaled charge depths greater
than 3 in Rockville granite. A similar result probably would have been
obtained in charcoal granite and basalt, where data are incomplete due to
an insufficient amount of suitable rock. These materials are characterized
by high modulus of elasticity, sonic velocity, and strength. The weaker
materials, in which larger craters were formed, would not crater at scaled
charge depths greater than 1.8 to 2.4,

Plots of maximum scaled crater depth against the various physical proper-
ties for both laboratory and field tests are shown in figure 6.

The plot showing the least scatter is that of tensile strength. This is
not surprising, if the reflected strain pulse is the main cause of cratering.
In fact, tensile strength is quite likely the most important property in most
types of failure of brittle material. Because this property was measured at
low rates of loading, whereas cratering occurs at high rates of loading, the
plot implies a fairly simple relationship between dynamic and static tensile
strength., It should be noted, however, that due to the shape of the curve,
this relationship is not too useful for predicting the maximum crater depths.,

Trends occur in all the plots except that of Poisson's ratio, and in gen-
eral they are improved congiderably by excluding one or more field data points,
This is understandable in that cores are not nearly as representative of -the
rock blasted in the field as they are of rock blasted in the laboratory where
the core volume is the same order of magnitude as the crater volume,

Crater Volume

Scaled crater volume versus scaled charge depth is shown in figure 7.
Most of these plots show an exponential increase in crater volume as crater
depth is increased, up to a maximum, after which crater volume drops rapidly
to zero. The granite and basalt data are an exception to this.

The relationships between maximum crater volume and the various mechanical
properties are shown in figure 8. Since small changes in charge depth near
the optimum depth can cause fairly large changes in crater volume, one would
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expect the increased scatter shown in these graphs. The tensile-strength
plot, however, is still a good one, the field data falling in well with the
laboratory data.

Crater Radius

Scaled crater radii versus scaled charge depths are shown in figure 9,
and maximum radii as a function of physical properties, in figure 10. As
might be expected, the data are similar to the corresponding plots of scaled
crater volume. One notable thing is that the largest maximum scaled crater
radius is about 4 and that several of. the materials are grouped around this
value.

Interrelationship of Physical Properties

In order to detect possible trend correlations, the seven measured phys-
ical properties were plotted against each other (fig. 1l). Nine measurements
are hardly sufficient to establish any definite relationships, but certain
trends are apparent. The ratio of compressive strength to tensile strength
was about 15 for the four rocks tested and ranged from 4 to 12 for the syn-
thetic materials.

CONCLUSIONS

" The data presented herein support the conclusion that static tensile
strength is related to the maximum scaled crater dimensions obtained by blast-
ing. However, the nature of the relationship limits the practical applicabil-
ity for use in prediction. Field data are consistent with the laboratory tests
in both synthetic material and rock. More scatter occurs between other phys-
ical properties and maximum crater dimensions, but trend relationships still
exist, with the field data being less consistent.

The limited amount of data presented here also indicates that correla-
tions exist between the mechanical properties themselves. It would be of con-
siderable practical importance if a relationship could be found between tensile
strength and elastic wave velocity or compressive strength.

The maximum charge depth at which cratering will occur is not determined
by the strength of the material but by pulse attenuation in the material.

The maximum crater depths tend to be more or less constant between scaled
charge depths of 0.5 and 2.0, and the maximum scaled crater radius obtainable
in any material was about 4.0.
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